Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Comput Biol Chem ; 98: 107668, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1828156

ABSTRACT

The emergence of COVID-19 caused by SARS-CoV-2 and its spread since 2019 represents the major public health problem worldwide nowadays, which has generated a high number of infections and deaths. The spike protein (S protein) is the most studied protein of SARS-CoV-2, and key to host-cell entry through ACE2 receptor. This protein presents a large pattern of glycosylations with important roles in immunity and infection mechanisms. Therefore, understanding key aspects of the molecular mechanisms of these structures, during drug recognition in SARS-CoV-2, may contribute to therapeutic alternatives. In this work, we explored the impact of glycosylations on the drug recognition on two domains of the S protein, the receptor-binding domain (RBD) and the N-terminal domain (NTD) through molecular dynamics simulations and computational biophysics analysis. Our results show that glycosylations in the S protein induce structural stability and changes in rigidity/flexibility related to the number of glycosylations in the structure. These structural changes are important for its biological activity as well as the correct interaction of ligands in the RBD and NTD regions. Additionally, we evidenced a roto-translation phenomenon in the interaction of the ligand with RBD in the absence of glycosylation, which disappears due to the influence of glycosylation and the convergence of metastable states in RBM. Similarly, glycosylations in NTD promote an induced fit phenomenon, which is not observed in the absence of glycosylations; this process is decisive for the activity of the ligand at the cryptic site. Altogether, these results provide an explanation of glycosylation relevance in biophysical properties and drug recognition to S protein of SARS-CoV-2, which must be considered in the rational drug development and virtual screening targeting S protein.


Subject(s)
COVID-19 , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Glycoproteins , Glycosylation , Humans , Ligands , Molecular Dynamics Simulation , Protein Binding , Spike Glycoprotein, Coronavirus/metabolism
2.
Sci Rep ; 11(1): 15452, 2021 07 29.
Article in English | MEDLINE | ID: covidwho-1387487

ABSTRACT

SARS-CoV-2 main protease is a common target for inhibition assays due to its high conservation among coronaviruses. Since flavonoids show antiviral activity, several in silico works have proposed them as potential SARS-CoV-2 main protease inhibitors. Nonetheless, there is reason to doubt certain results given the lack of consideration for flavonoid promiscuity or main protease plasticity, usage of short library sizes, absence of control molecules and/or the limitation of the methodology to a single target site. Here, we report a virtual screening study where dorsilurin E, euchrenone a11, sanggenol O and CHEMBL2171598 are proposed to inhibit main protease through different pathways. Remarkably, novel structural mechanisms were observed after sanggenol O and CHEMBL2171598 bound to experimentally proven allosteric sites. The former drastically affected the active site, while the latter triggered a hinge movement which has been previously reported for an inactive SARS-CoV main protease mutant. The use of a curated database of 4.8 k flavonoids, combining two well-known docking software (AutoDock Vina and AutoDock4.2), molecular dynamics and MMPBSA, guaranteed an adequate analysis and robust interpretation. These criteria can be considered for future screening campaigns against SARS-CoV-2 main protease.


Subject(s)
COVID-19/metabolism , Coronavirus 3C Proteases/antagonists & inhibitors , Flavonoids/pharmacology , Antiviral Agents/pharmacology , Binding Sites , COVID-19/immunology , Coronavirus 3C Proteases/immunology , Coronavirus 3C Proteases/metabolism , Databases, Factual , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Protease Inhibitors/pharmacology , Protein Binding , SARS-CoV-2/drug effects , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL